
Security Review For
Avantis

Private Contest Prepared For: Avantis
Lead Security Expert: bughuntoor
Date Audited: October 8 - November 1, 2024

1

https://github.com/spacegliderrrr


Introduction
Avantis is the world’s first fully onchain exchange focused on cross asset leverage (real
world assets + crypto), where you’d see BTC-USD and USD-JPY trending on the same day!
The contest focuses on their v1.5 launch, covering several new trading specific features
such as CEX-like fee tiers and a new perp order type (variable PnL fee).

Scope
Repository: Avantis-Labs/avantis-contracts

Branch: v1.5

Audited Commit: 881be832afed762dc5f8d3194fce36ed5feeb1c3

Final Commit: ee61312b28a2aea934cb8f9484afd7433e82b776

For the detailed scope, see the contest details.

Findings
Each issue has an assigned severity:

• Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

• High issues are directly exploitable security vulnerabilities that need to be fixed.

Issues Found

High Medium

2 27

Issues Not Fixed or Acknowledged

High Medium

0 0

1

https://github.com/sherlock-audit/2024-09-avantis/blob/main/README.md#audit-scope


Security experts who found valid issues
eeyore
jokr
samuraii77
bughuntoor
KupiaSec

TurnipBoy
Ironsidesec
Varun_05
Afriaudit
aslanbek

qpzm
thekmj
pseudoArtist
jah
1nc0gn170

2

https://github.com/0xklapouchy
https://github.com/jokrsec
https://github.com/samuraii77
https://github.com/spacegliderrrr
https://github.com/KupiaSecAdmin
https://github.com/IAmTurnipBoy
https://github.com/ironsidesec
https://github.com/vsharma4394
https://github.com/Afriaudit
https://github.com/aslanbekaibimov
https://github.com/qpzm
https://github.com/midori-fuse
https://github.com/PseudoArtistHacks
https://github.com/demelew
https://github.com/1nc0gn170


Issue H-1: Any referrer can overwrite other
traders' referral codes into their own, steal-
ing rebates and decreasing their discount
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/3

Found by
1nc0gn170, Afriaudit, Ironsidesec, KupiaSec, bughuntoor, eeyore, jah, jokr, qpzm,
samuraii77, thekmj

Summary
Due to wrong access control/wrong design of referral code usage, any referrer can
overwrite any other traders' referral codes into their own. This redirects all trading fee
rebates to the adversary's account instead of the rightful referrer, and will even cause
traders to lose funds due to forced decreased discount.

Root Cause
In Referral, the function setTraderReferralCodeByOwner() allows anyone (any referrer) to
overwrite any trader's code into their own code:

function setTraderReferralCodeByOwner(bytes32 _code, address _trader) external
whenNotPaused{↪→

require(codeOwners[_code] == msg.sender, "OWNER_ONLY");
_setTraderReferralCode(_trader, _code); // @audit-note anyone can do this

}

https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/
Referral.sol#L170

Anyone can also become a referrer just by registering their own code of choice, as long
as they haven't own any:

function registerCode(bytes32 _code) external whenNotPaused {
require(_code != bytes32(0), "Referral: invalid _code");
require(codeOwners[_code] == address(0), "Referral: code already exists");
require(codes[msg.sender] == bytes32(0),"Referral: referrer already
registered");↪→

codeOwners[_code] = msg.sender;
codes[msg.sender] = _code;

3

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/3
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Referral.sol#L170
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Referral.sol#L170


referrerTiers[msg.sender] = _DEFAULT_TIER_ID;
isPrivate[_code] = false;

emit RegisterCode(msg.sender, _code);
}

https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/
Referral.sol#L180

When a trade is opened, the trading fee discount is applied to the trader, and the trading
fee rebate is sent to the referrer:

function applyReferralAndPnlFee(
address _trader,
uint _fees,
uint _leveragedPosition,
bool _isPnl,
uint _pairIndex,
int _percentProfit,
uint _collateral

) public override onlyTrading returns (uint, uint) {
// ...
(uint traderFeePostDiscount, address referrer, uint referrerRebate) =
referral.traderReferralDiscount(_trader, _fees);↪→

rebates[referrer] += referrerRebate;
}

https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/
TradingStorage.sol#L580-L582

The referrer can easily claim the rebate through claimRebate(), without the admin
having any power to stop them.

https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/
TradingStorage.sol#L649-L656

Internal pre-conditions
None

External pre-conditions
None

4

https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Referral.sol#L180
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Referral.sol#L180
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingStorage.sol#L580-L582
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingStorage.sol#L580-L582
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingStorage.sol#L649-L656
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingStorage.sol#L649-L656


Attack Path
1. Alice (whale) deposits a large amount of margin. Alice applies a tier-3 code to get
the maximum fee discount of 15%.

2. Bob monitors the mainnet, and sees this activity.

3. Bob creates a new referral code, and overwrites Alice's code into their own with set
TraderReferralCodeByOwner(). New referral codes starts at tier 1, given only a 5%
discount.

4. When Alice opens a trade, the fee discount/rebate is applied based on Bob's code
instead.

If Alice sets back the old code, Bob can simply backrun her to set his new code again.
The end result is that:

• Alice only gets a 5% fee discount, instead of the rightful 15% from Alice's referrer.

• Alice's referrer loses the 15% fee rebate completely. Bob gets a 5% fee rebate from
Alice's trade.

Impact
• Attacker gets all the trading rebates for themselves. Legit referrers lose that
trading rebate.

• Trader is forced a lower fee discount with the attacker's tier-1 referral code, instead
of being able to take a higher discount with a tier-3 referral code that the trader
wills to.

PoC
No response

Mitigation
Traders should be allowed to decide which referral code they wish to use. There are some
possible designs for this:

• Delete setTraderReferralCodeByOwner() entirely. For private codes, a referrer
should only be able to invite a trader to use their code. The trader should explicitly
accept the invitation to use the code.

• setTraderReferralCodeByOwner() should only be possible if the trader hasn't been
applied any referral codes. The trader should be allowed to change code at will, if
the current referral code isn't from whom they know.

5



Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Avantis-Labs/avantis-contracts/pull/54/

6

https://github.com/Avantis-Labs/avantis-contracts/pull/54/


Issue H-2: Incorrect collateral value for re-
balance if partial trade converts to full
trade
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/130

Found by
Ironsidesec, KupiaSec, TurnipBoy, bughuntoor, eeyore, jokr

Summary
In the _unregisterTrade function, after a trade is partially or fully closed, the open
interest reserved for the trade is released:

storageT.vaultManager().releaseBalance(_collateral.mul(_trade.leverage));

For a partial trade, _collateral represents the amount of collateral the trader wants to
close, while for a full trade close, it equals the initialPosToken of the trade.

However, in some cases, when a trader partially closes a trade, any remaining dust
collateral is also considered closed. This approach is intended to manage insignificant
positions.

if (_trade.initialPosToken == _collateral || (_collateral + totalFees >=
_trade.initialPosToken)){↪→

storageT.unregisterTrade(_trade.trader, _trade.pairIndex, _trade.index);
pairInfos.resetTradeInitialAccess(_trade.trader, _trade.pairIndex,
_trade.index);↪→

_collateral = _trade.initialPosToken;
}
else {

storageT.registerPartialTrade(_trade.trader, _trade.pairIndex, _trade.index,
_collateral);↪→

}

The problem arises because in such cases, the rebalance should consider the complete i
nitialPosToken, not just the provided _collateral for the partial trade. As a result, the
open interest corresponding to the remaining part is not released, even though the trade
is effectively closed.

This unreleased open interest accumulates and becomes unrecoverable, compounding
the issue due to two factors:

1. High leverage trades amplify the open interest value that remains stuck.

7

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/130


2. For large trades where total fees on partial closes are high, the seized collateral is
also high. This leads to a significantly higher open interest value being stuck. Due
to this LPs would not be able to withdraw funds in some cases as utilisation ratio
would go down gradually

Root Cause
• In TradingCallbacks.sol:554 the releaseBalance function uses incorrect collateral
amount when a partial trade is made but full trade is closed

Internal pre-conditions
No response

External pre-conditions
No response

Attack Path
1. A trader opens a long position in a BTC pair with the following parameters:

• Collateral: 5000 USDC

• Leverage: 100x

• Opening price: 50,000 USDC

2. Reserved amount = 5000 * 100 = 500,000 USDC

3. The BTC price then rises to 55,000, allowing the trader to achieve a maximum profit
of 500%.

4. The trader decides to partially close the trade, withdrawing 4600 USDC.

• Total fees for the partial trade amount to approximately 420 USDC.

• Rebalance amount = 4600 * 100 = 460,000 USDC

5. After the partial trade of 4600 USDC, the remaining 400 USDC collateral is less
than the total fees of 420 USDC. Therefore, the remaining collateral will also be
closed, and the trade will be registered as a full close.

6. In this scenario, the rebalance should release the full 500,000 USDC, but it only
rebalances 460,000 USDC.

7. As a result, the stuck reserved open interest is:

stuck reserved open interest = 500,000 - 460,000 = 40,000 USDC

8

https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingCallbacks.sol#L554


Impact
This causes significant amount of open interest to become unreservable, making it
unavailable for other trades. LPs would not be able to withdraw funds as utilisation ratio
would go down

PoC
No response

Mitigation
If the trade is converted from partial to full, then release the full amount

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Avantis-Labs/avantis-contracts/pull/42/files

9

https://github.com/Avantis-Labs/avantis-contracts/pull/42/files


Issue M-1: Loss protection inconsistency
might result in users taking higher losses
than supposed to.
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/29

The protocol has acknowledged this issue.

Found by
bughuntoor, jokr, qpzm

Summary
In skewed market, users can have loss protection of 10%-20%. Based on the provided
docs, the loss protection should work as follows:

Example 2 (Directional Trader): If the net PnL of the above trader is -20%, then
technically the trader should have lost $2,000 (20% of $10K). However, with
loss protection, the trader only loses $2000 * (1-20%) = $1,600. This is the magic
of loss protection !

However, the current implementation works slightly different.

function getTradeValuePure(
uint collateral,
int percentProfit,
uint rolloverFee,
uint closingFee,
uint lossProtection

) public view returns (uint, int, uint) {
int pnl = (int(collateral) * percentProfit) / int(_PRECISION) / 100;
int lossProtectedPnl = pnl;
if (pnl < 0) {

lossProtectedPnl = (pnl * int(lossProtection)) / 100;
}

int fees = int(rolloverFee) + int(closingFee);
int value = int(collateral) + lossProtectedPnl - fees;
if (value <= (int(collateral) * int(100 - liqThreshold)) / 100) {

value = lossProtectedPnl - pnl;
lossProtectedPnl = fees - int(collateral) + value;

}
return (value > 0 ? uint(value) : 0, lossProtectedPnl, uint(fees));

}

10

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/29


We can see that if the value is less than 15% of the collateral, the value paid out to the
user is the delta of the lossProtectedPnl-pnl.

Consider the following situation:

1. User has opened a $10k position with loss protection of 10%.

2. Position's current pnl is -95%. This would make the lossProtectedPnl equal to
85.5%. For simplicity we ignore the margin/ rollover fees.

3. This would cause us to enter the if-statement. Then the value assigned to the
position would be -$8550-(-9500)=$950.

4. According to the example above, the position's value should've been $10000-0.9*(9
500)=$1450. Instead it is just $950, resulting in $450 extra loss to the user. This is an
extra loss of $450, or the user receiving ~35% less than supposed to.

Root Cause
Wrong calculation of position's value

Affected Code
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/
PairInfos.sol#L671

Impact
Loss of funds

Mitigation
Fix is non-trivial

11

https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PairInfos.sol#L671
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PairInfos.sol#L671


Issue M-2: Wrong handling of wallet open
interest will cause issues
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/61

The protocol has acknowledged this issue.

Found by
samuraii77

Summary
Wrong handling of wallet open interest will cause issues

Root Cause
Not properly handling wallet open interest per each pair.

Each wallet can have a certain amount of max interest (the code below is a check in Trad
ingStorage::withinExposureLimits() that must hold true when opening a trade):

walletOI(_trader) + _leveragedPos <= pairsStored.maxWalletOI(_pairIndex);

The issue is that we are checking the total wallet open interest of a trader against the
max wallet open interest for a particular pair. Let's take a look at PairStorage::maxWalle
tOI():

function maxWalletOI(uint _pairIndex) external view override returns (uint) {
return (storageT.maxOpenInterest() * pairs[_pairIndex].values.maxWalletOI) /
100;↪→

}

As seen, we calculate the max open interest for a wallet based on the pair index
provided. For the walletOI function used in the check above, we can clearly see that
there is no pair index input, thus we can see that the return value of the function is not
based on the pair of the trade. Let's also take a look at TradingStorage::_updateOpenInt
erestUSDC() where the wallet open interest for a trader gets updated:

_walletOI[_trader] = _open ? _walletOI[_trader] + _leveragedPosUSDC :
_walletOI[_trader] - _leveragedPosUSDC;↪→

As seen, it gets updated the same way regarding of the pair index.

12

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/61


From the docs, I could not deduct whether the intentions were for each pair to have its
own max wallet OI or for there to be a max wallet OI across all pairs. Either way, the
current implementation is wrong as it is a mixture of the 2.

Internal pre-conditions
No response

External pre-conditions
No response

Attack Path
1. There are 2 pairs, each with a maximum open interest of 100

2. Bob creates a trade on one of the pairs with a position size of 100

3. His wallet open interest gets updated to 100

4. He tries to create another trade on the other pair with a position size of 100

5. This reverts as he already has 100 wallet open interest which is also the maximum
wallet open interest for the other pair (despite him having 0 open trades on the
other pair)

Impact
Unexpected reverts

PoC
No response

Mitigation
Refactor the code to match your intention (either max wallet open interest for each pair
or max wallet open interest across all pairs)

13



Issue M-3: Precision loss in VaultManager#g
etCollateralFee will make users overpay b
alancingFee
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/64

The protocol has acknowledged this issue.

Found by
aslanbek

Summary
On deposits and withdrawals, a balancing fee may or may not be charged, depending on
the current reserve ratio in tranches:

1. Tranche#deposit -> ERC4626#previewDeposit -> Tranche#_deposit ->
getDepositFeesTotal -> balancingFee; Tranche#withdraw ->
ERC4626#previewWithdraw -> Tranche#_withdraw -> getWithdrawalFeesRaw ->
balancingFee

2. Tranche#balancingFee -> VaultManager#getBalancingFee

https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/
VaultManager.sol#L415-L429

As we can see, instead of bps, getDynamicReserveRatio returns percents.

Therefore, if the actual reserve ratio is 6299 bps, it would return 62.

in getBalancingFee:

if ((getDynamicReserveRatio(tranche, isDeposit, assets) * 100) >
balancingDeltaThreshold) {↪→

62*100 < 6250 => getBalancingFee returns 0 instead of 500, despite the actual reserve
ratio being outside of the target range

so instead of paying the balancingFee because actual ratio is above 6250 (value from
initializer), users will not.

Similarly, when the ratio is between 3751 and 3799 bps, getDynamicReserveRatio would
return 37, and balancingFee return a fee of 500, even though the current reserve ratio is
within the target range.

14

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/64
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/VaultManager.sol#L415-L429
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/VaultManager.sol#L415-L429


Root Cause
Percentage precision instead of bps in getDynamicReserveRatio.

Internal pre-conditions
getDynamicReserveRatio is in 3750-3799 or 6750-6799 bps range

External pre-conditions
Deposit or withdrawal into a Tranche.

Impact
Deposits and withdrawals pay [do not pay] the balancingFee they shouldn't [should].

PoC
Case 1:

juniorTranche has 62_999e6 USDC seniorTranche has 37_101e6 USDC

Alice wants to withdraw 100e6 from seniorTranche ratio = 62999e6 * 100 / 100_000e6 = 62

62*100 = 6200

6200 < 6250

balancingFee is not charged (but it should be)

Case 2:

seniorTranche has 62_001e6 USDC juniorTranche has 38_099e6 USDC

Alice wants to withdraw 100e6 from juniorTranche ratio = 37_999e6 * 100 / 100_000e6 = 37

37*100 = 3700

3700 < 3750

balancingFee is charged (but it should not be)

Mitigation
getDynamicReserveRatio should return bps instead of percentage; its return value should
not be multiplied by 100 in getBalancingFee anymore.

15



Issue M-4: Fee distribution will be DOS'd
when utilizationRatio >= withdrawThresh-
old for either tranche
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/72

Found by
TurnipBoy, bughuntoor

Summary
Whenever the vaultManager distributes fees it attempts to call
_distributeCollectFeeShares.

VaultManager.sol#L642-L652

function _distributeCollectedFeeShares(address _tranche) internal {
uint256 assets = ITranche(_tranche).redeem( <- @audit attempts to redeem

ITranche(_tranche).maxRedeem(address(this)),
address(this),
address(this)

);

if (assets > 0) {
_distributeVeRewards(IVeTranche(ITranche(_tranche).veTranche()), assets);

}
}

We see above that it will always attempt to redeem from the tranche.

Tranche.sol#L288-L305

function _withdraw(
address caller,
address receiver,
address owner,
uint256 assets,
uint256 shares

) internal virtual override {
uint256 fee = getWithdrawalFeesRaw(assets);
super._withdraw(caller, receiver, owner, assets, shares);

if (fee > 0) {
SafeERC20.safeTransfer(ERC20(asset()), address(vaultManager), fee);

16

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/72
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/VaultManager.sol#L642-L652
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Tranche.sol#L288-L305


vaultManager.allocateRewards(fee, false);
emit FeeTransferredToVM(fee, false);

}
require(utilizationRatio() < withdrawThreshold, "UTILIZATION_RATIO_MAX"); <-

@audit reverts even when withdrawing 0↪→

}

The problem here is that L304 reverts when utilizationRatio() < withdrawThreshold, hence
all distributions will fail.

Root Cause
VaultManager:L643 always redeems shares even if maxRedeem = 0

Internal pre-conditions
utilizationRatio >= withdrawThreshold

External pre-conditions
None

Attack Path
1. Fees are ready to be distributed

2. utilizationRatio >= withdrawThreshold for one of the tranches

3. Fee distributions will always revert

Impact
Fee distribution will be DOS'd

PoC
No response

Mitigation
Redeem should be skipped if maxRedeem returns as 0

17



Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Avantis-Labs/avantis-contracts/pull/37

18

https://github.com/Avantis-Labs/avantis-contracts/pull/37


IssueM-5: Guaranteed SL, forced trade du-
rations and pnl fee structure leads to pairs
of delta neutral trades that always make
money
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/77

The protocol has acknowledged this issue.

Found by
TurnipBoy

Summary
The following exploit hinges on 3 factors:

1. Stop losses are guaranteed to execute even if the current price is below the SL price

2. Trades over a certain amount CANNOT be closed before a certain amount of time

3. PNL fee structure makes all fees scale with profit rather than being fixed

Trading.sol#L512-L522

if (_orderType == ITradingStorage.LimitOrder.LIQ) {
uint liqPrice = pairInfos.getTradeLiquidationPrice(

t.trader,
t.pairIndex,
t.index,
t.openPrice,
t.buy,
t.initialPosToken,
t.leverage

);
require(t.sl == 0 || (t.buy ? liqPrice > t.sl : liqPrice < t.sl), "HAS_SL"); <-

will revert because sl price is better than liquidation price↪→

We see above that liquidation cannot be called unless the liquidation price is worse than
the sl price. This means that as long as we have a stop loss open we can never be
liquidated under that price. This means that we must execute as a stop loss limit to
liquidate a position with a valid stop loss.

Trading.sol#L523-L525

19

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/77
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Trading.sol#L512-L522
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Trading.sol#L523-L525


}else{
require(block.timestamp - t.timestamp >=

pairsStored.openCloseThreshold(t.pairIndex,
t.initialPosToken.mul(t.leverage)), "EARLY_CLOSE");

↪→

↪→

}

This leads us to the next point. Stop losses cannot be triggered until at least a certain
amount of time has passed for the largest position sizes, this is 15 minutes. This give us 15
free minutes in which we cannot be liquidated.

TradingCallbacks.sol#L454-L463

_trade.positionSizeUSDC -= isPnl
? 0 <-@audit no open fee
: storageT.handleDevGovFees(

_trade.trader,
_trade.pairIndex,
_trade.positionSizeUSDC.mul(_trade.leverage),
true,
true,
_trade.buy

);

PairStorage.sol#L608-L618

function getPnlBasedFee(uint pairIndex, uint collateral, int percentProfit)
external view override returns(uint) {↪→

if(percentProfit < 0) return 0; // No Fee charged for losses

uint i = 0;
for(i; i < fees[pairIndex].pnlFees.numTiers; i++){

if(uint(percentProfit) < fees[pairIndex].pnlFees.tierP[i]) break;
}

uint pnl = collateral*uint(percentProfit)/ _PRECISION/ 100;
return fees[pairIndex].pnlFees.feesP[i] * pnl/ _PRECISION / 100;

}

We see for pnl trades that the open fee is 0 and that exit fees are applied only on the
profit made on the trade.

Together these three small issues lead to a large problem. A trade can place two
opposing trades, one long and one short. Each trade has a stop loss with tolerance just
small enough for the stop loss to be valid. For 15 minutes neither of these trades can be
liquidated or closed. During this time however, the underlying asset will move either up or
down even by a small amount. After 15 minutes, one trade will be liquidated for virtually
no loss and the other can be closed for a profit.

20

https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingCallbacks.sol#L454-L463
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PairStorage.sol#L608-L618


Reporting as HIGH since currently pairIndex 34 (ORDI) and 35 (STX) are hardcoded to
behave in this manner and can be exploited from the moment this upgrade goes into
effect.

Root Cause
1. Trading.sol:L522 guarantees that stop losses must be used instead of liquidation for
all crypto pairs (including ORDI and STX)

2. Trading.sol:L524 guarantees that stop losses cannot be executed for 15 minutes
after the order is place

3. PairStorage.sol:L574 enforces open close timer for pairIndex 34 (ORDI) and 35 (STX)

4. TradingCallbacks.sol:L455 charges no open fee

5. PairStorage.sol:617 charges pnl fees proportional to gains and are not fixed

Internal pre-conditions
None

External pre-conditions
Target asset price is different by any amount in 15 minutes

Attack Path
1. Open a long and short PNL market order with extremely tight stop loss with max
leverage

2. Wait 15 minutes

3. Allows one order to trigger stop loss with minute loss

4. Close the other order for guaranteed profit

Impact
All funds can be drained from LPs

PoC
Add the following to the test/units/ folder to show how these delta neutral trades can
make guaranteed money:

21



contract GuaranteedSLExploit is TradeBase {

function testSLExploit() public {
// open long

uint rand = uint(keccak256(abi.encodePacked(block.timestamp))) % numTraders;

vm.startPrank(traders[rand]);

uint amount = usdc.balanceOf(traders[rand]) / 2;
usdc.approve(address(tradingStorage), amount );

uint id = _placeMarketLong(traders[rand], amount, btcPairIndex, 50000);
vm.stopPrank();
_executeMarketLong(traders[rand], amount, btcPairIndex, 50000, id);

// open short
vm.startPrank(traders[rand]);

usdc.approve(address(tradingStorage), amount );

uint id2 = _placeMarketShort(traders[rand], amount, btcPairIndex, 50000);
vm.stopPrank();
_executeMarketShort(traders[rand], amount, btcPairIndex, 50000, id2);

// roll block forwards to set SL since I cant find method in test suite to set
sl during order creation↪→

vm.roll(5);

vm.startPrank(traders[rand]);
trading.updateTpAndSl{value:

mockPyth.getUpdateFee(_generateSampleUpdateDataCrypto(1, btcPairIndex,
50000))}(

↪→

↪→

btcPairIndex,
traderOrderIndex[traders[rand]] -1,
withPricePrecision(50050),
withPricePrecision(49500),
_generateSampleUpdateDataCrypto(1, btcPairIndex, 50000)
);

vm.stopPrank();
vm.startPrank(operator);

uint256 price = 50500;

_setChainlinkBTC(price);

// losing trade cannot be liquidated
_executeLimitOrderThatWillFail(

ITradingStorage.LimitOrder.LIQ,

22



traders[rand],
btcPairIndex,
traderOrderIndex[traders[rand]] -1,
price);

vm.stopPrank();

// fast forward 15 minutes
vm.warp(900);

// stop loss short
vm.startPrank(operator);

_executeLimitOrder(
ITradingStorage.LimitOrder.SL,
traders[rand],
btcPairIndex,
traderOrderIndex[traders[rand]] -1,
price);

vm.stopPrank();

// close long for profit
vm.startPrank(traders[rand]);
_trade =

tradingStorage.openTrades(traders[rand], btcPairIndex, 0);

uint closed = _placeMarketClose(btcPairIndex, _trade.initialPosToken, 0,
price);↪→

vm.stopPrank();
_executeMarketClose(btcPairIndex, _trade.initialPosToken,

traderOrderIndex[traders[rand]] - 1, price, closed);↪→

// show that trade has made money
assert(usdc.balanceOf(traders[rand]) > amount * 2);

}

function _executeLimitOrderThatWillFail(
ITradingStorage.LimitOrder _orderType,
address _trader,
uint _pairIndex,
uint _index,
uint _rawPrice) internal{

_setChainlinkBTC(_rawPrice);

bytes[] memory pythData = _generateSampleUpdateDataCrypto(1, btcPairIndex,
_rawPrice);↪→

uint fee = mockPyth.getUpdateFee(pythData);

23



vm.expectRevert();
trading.executeLimitOrder{value: fee}(

_orderType,
_trader,
_pairIndex,
_index,
pythData);

}

function _executeLimitOrder(
ITradingStorage.LimitOrder _orderType,
address _trader,
uint _pairIndex,
uint _index,
uint _rawPrice) internal{

_setChainlinkBTC(_rawPrice);

trading.executeLimitOrder{value:
mockPyth.getUpdateFee(_generateSampleUpdateDataCrypto(1, btcPairIndex,
_rawPrice))}(

↪→

↪→

_orderType,
_trader,
_pairIndex,
_index,
_generateSampleUpdateDataCrypto(1, btcPairIndex, _rawPrice ));

}
}

Mitigation
Guaranteed SL and forced trade duration should never be enabled on the same pair.
ORDI and STX markets should be amended here to remove their hard coded forced trade
duration.

24

https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PairStorage.sol#L564-L577


Issue M-6: VaultManager accounting is off
and will result in significant errors
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/84

The protocol has acknowledged this issue.

Found by
Ironsidesec, bughuntoor, eeyore

Summary
Whenever a user has to receive funds for their payout, the VaultManager only makes sure
to hold enough funds to cover for the currently accrued borrowing fees.

function _sendUSDCToTrader(address _trader, uint _amount) internal {

// For the extereme case of totalRewards exceeding vault Manager balance
int256 balanceAvailable = int(storageT.usdc().balanceOf(address(this))) -
int(totalRewards);↪→

if (int(_amount) > balanceAvailable) {
// take difference (losses) from vaults
uint256 difference = uint(int(_amount) - int(balanceAvailable));

uint256 seniorUSDC = (getSeniorLossMultiplier() * difference * (100 -
getReserveRatio(0)))/100 / 100;↪→

seniorUSDC = (seniorUSDC > difference) ? difference : seniorUSDC;

uint256 juniorUSDC = difference - seniorUSDC;
junior.withdrawAsVaultManager(juniorUSDC);
senior.withdrawAsVaultManager(seniorUSDC);

}

require(storageT.usdc().transfer(_trader, _amount));
emit USDCSentToTrader(_trader, _amount);

}

This means that in case the contract holds other funds, it will first use them, instead of
the tranche funds. Such funds that might be within the contract are:

• Traders' collateral

• Liquidators' execution fees.

Using either of these funds will result in unfair results for the liquidity providers.

25

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/84


Consider the following scenarios:

Scenario 1

1. There are only 2 traders, both with $1000 position size, one of them is +100% pnl and
the other one is -100% pnl. Borrowing fees and pnl fees accrued currently within the
contract are currently 0. (for simplicity, we'll ignore borrowing fees)

2. The positive pnl trader closes their position first. Since there are enough funds
within the VaultManager (due to the other trader's collateral), the funds are simply
transferred to the trader. None of the tranche's share values are impacted,
although they should be (as pnlrewards are 0).

3. When the negative pnl position is closed, the user has nothing to receive, but the Va
ultManager will add 1000 USDC to its pnlRewards. Note that contract will now not
hold any funds and there's nothing to actually back up these pnl rewards.

Scenario 2

1. There are only 2 traders, both with $1000 position size, both are at +100% pnl.
Borrowing fees and pnl fees accrued currently within the contract are currently 0.
(for simplicity, we'll ignore borrowing fees)

2. One of them closes their position. Since there are enough funds within the contract,
the position will be instantly paid out and no funds will be taken from any of the
tranches and therefore their share value will not be decreased (although they
should).

3. After some time the the other trader closes their position too (assuming at same
pnl). Now, since the contract will not hold any funds, it will take all of the payout
from the tranche's ($2000). This would mean that the funds will be taken based on
the tranche ratios at the closure of the 2nd position, when instead they $1000
should've been taken based on the ratio at the closure of first position and only the
other $1000 at the closure of the 2nd position.

Note that any liquidity providers adding liquidity inbetween steps 2 and 3 will add at an
unfairly overvalued tranche shares, which would be -EV action. Any LPs aware of the
following issue, can withdraw inbetween steps 2 and 3 to avoid a loss.

Root Cause
Wrong accounting

Affected Code
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/
VaultManager.sol#L607

26

https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/VaultManager.sol#L607
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/VaultManager.sol#L607


Impact
Tranche share values will often be significantly off and not correspond to their true value.
Tranche payouts will happen based at wrong ratios, which are not the ones at the time a
position was closed. Possibly, there would be no funds to cover for accrued pnlfees.

Mitigation
Implement global accounting for position collaterals and execution fees within the
VaultManager

27



Issue M-7: Liquidation might occur in-
stantly after withdrawing max possible
margin
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/105

Found by
jokr

Summary
An incorrect position health check after withdrawing margin could lead to the position
becoming liquidatable immediately after the withdrawal.

The trader can withdraw margin up to an amount such that the effective position, after
accounting for PnL, should be greater than 20% of the collateral. This ensures the
position still has a 5% buffer to avoid reaching the liquidation state after withdrawing
the maximum possible margin.

require((int(_trade.initialPosToken) + pnl) > (int(_trade.initialPosToken) *
int(100 - _WITHDRAW_THRESHOLD_P)) / 100, "W_T_B");↪→

However, this check fails in cases where the trader has loss protection. Since the PnL
used in the above check is the loss-protected PnL, the trader is able to withdraw more
margin than intended based on the loss protection.

But because the PnL used in the liquidation check does not consider loss protection, if
the trader withdraws the maximum possible margin, their position will enter a
liquidatable state immediately after the withdrawal.

Root Cause
• In TradingCallbacks:85 margin withdrawal health check uses lossProtectedPnl,
inflating position value and allowing excessive collateral than intended withdrawal
while appearing healthy but actually not based on the liquidation price

Internal pre-conditions
1. Trader should have pnl protection

28

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/105
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingCallbacks.sol#L85


External pre-conditions
1. Trader should withdraw margin from open trade

Attack Path
The trader opens a long position with the following parameters:

Collateral = 250 USDC
Leverage = 4x
LevPositionToken = 1000
Loss protection rebate = 20%

The price then drops by 9%, reducing the price to 910 USDC.

profitP = -9% * 4 = -36%
pnl = -36% of 250 = -90 USDC

net position value = 250 - 90 = 160

So the position remains in a healthy state.

Next, the trader tries to withdraw 150 USDC from the margin.

newCollateral = 100 USDC
newLeverage = 10x

profitP = -9% * 10 = -90%
pnl = -90% of 100 = -90 USDC
lossProtectedPnl = -72 USDC (20% loss protection rebate applied)

net position value = initialPosToken - lossProtectedPnl = 28

In this case, the health check passes since 28 is greater than 20% of newCollateral. The
withdrawal is successful.

However, on checking if the account is liquidatable:

profitP = -90%
pnl = -90% of 100 = -90 USDC
net position value = 100 - 90 = 10

The position is now liquidated immediately because the net position value is less than
15% of the collateral.

29



Impact
The health check does not work as intended in cases with loss protection, leading to
traders potentially being liquidated after withdrawing margin.

PoC
No response

Mitigation
Consider using pnl instead on loss protected pnl in the health check

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Avantis-Labs/avantis-contracts/pull/47

30

https://github.com/Avantis-Labs/avantis-contracts/pull/47


Issue M-8: The trader might get liquidated
when the position is closed due to inconsis-
tent liquidation check
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/106

The protocol has acknowledged this issue.

Found by
bughuntoor, jokr

Summary
In certain cases, the trader could get liquidated when attempting to close their position,
resulting in a portion of their collateral being seized.

A trader's position will be liquidated if their PnL loss exceeds 85% of the collateral. When
the trader closes the position, several fees are incurred, such as closing fees, margin fees,
and limit close fees (only if the user has set take-profit or stop-loss limits).

When a trader’s position is liquidated or closed, the following check in getTradeValuePure
determines the action based on the position's value.

if (value <= (int(collateral) * int(100 - liqThreshold)) / 100) {
value = lossProtectedPnl - pnl;
lossProtectedPnl = fees - int(collateral) + value;

}

This check ensures that if the position is liquidated, the user receives nothing (if there is
no loss rebate). If the position is closed, they receive the remaining value after
accounting for PnL and fees.

However, the above check calculates value as int value = int(collateral) +
lossProtectedPnl - fees, where fees represent the total fees:

total fees = closing fee + margin fee + limit close fee (if the trader opts for TP
or SL)↪→

The trader should be liquidated when their position loss exceeds 85% of the collateral.

Suppose the trader closes their position with a loss of x% of the collateral. The total fees
incurred for closing the position is y.

This issue occurs when:

31

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/106


y > 85% of collateral - x% of collateral

Root Cause
• In PairInfos.sol:671 the check for liquidation compares the position's remaining
value (collateral minus PnL and total fees) to the liquidation threshold (85% of
collateral). However, this threshold does not include the effect of these fees,
effectively lowering the trader's actual position value relative to the threshold.

Internal pre-conditions
No response

External pre-conditions
No response

Attack Path
1. If a user closes their position with a loss of 84% of the collateral and the total fees
amount to 2% of the collateral, then the position’s value is calculated as follows:

value = collateral - pnl - total fees
value = collateral - 84% of collateral - 2% of collateral = 14% of collateral

2. Since the position value is less than 15% of the collateral, the condition is met and
code block mentioned above would be executed, causing the trade to be
liquidated. Their collateral is seized, and they receive no remaining value.

Impact
Trader gets liquidated if he tries to close his position loosing a part of his collateral value

PoC
No response

Mitigation
Update liquidation check to account for total fees while comparision

32

https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PairInfos.sol#L671


Issue M-9: PriceAggregator uses the same
heartbeat for all the chainlink feeds
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/115

The protocol has acknowledged this issue.

Found by
Ironsidesec, bughuntoor, jokr, samuraii77

Summary
The fulfill function in PriceAggregator.sol function uses the same heartbeat
(chainlinkValidityPeriod) to check the freshness of the price for all the price feeds. The
problem with this is different price feeds have different heartbeats. Since they use the
same heartbeat the heartbeat needs to be slowest of all of them or else the staleness
check will fail most of the time. The issue is that if we use slowest heartbeat of all the
feeds as chainlinkValidityPeriod it would allow the consumption of potentially very
stale data.

Root Cause
In PriceAggregator.sol:126 and PriceAggregator.sol:158 same heartbeat value chainlinkV
alidityPeriod is used to check the freshness of all price feeds.

Internal pre-conditions
No pre-conditions

External pre-conditions
No external pre-conditions

Attack Path
1. Lets take BTC-USD feed and EUR-USD feed as examples.

2. On Base BTC-USD chainlink feed's heartbeat is 20 minutes and EUR-USD feed's
heartbeat is 24 hours.

3. So If price is not changed beyond deviation threshold they will only be updated
after heartbeat period is passed.

33

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/115
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PriceAggregator.sol#L126
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PriceAggregator.sol#L158
https://data.chain.link/feeds/base/base/btc-usd
https://data.chain.link/feeds/base/base/eur-usd


4. If we use 20 minutes as heartbeat period to check freshness of prices staleness
check will fail for EUR-USD will fail most of the times because its heartbeat is 24
hours it doesn't get updated every 20 mins.

5. If we use 24 hours as heartbeat we might consume stale BTC-USD price because
the actual heartbeat of that price feed is 20 mins and chainlink sets it heartbeat to
20 mins because BTC is volatile.

6. So two different heartbeat periods should be used for validating these two price
feeds.

Impact
1. Stale prices will be confirmed or

2. Price staleness check will fail most of the times.

PoC
No response

Mitigation
Use separate heartbeat periods for every price feed

34



Issue M-10: status of referral code is al-
ways set to private irrespective of the pro-
vided bool
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/120

Found by
Afriaudit, KupiaSec, jokr

Summary
In updateReferral function in Referral.sol is setting the status of the referral code to
true irrespective of the passed value. But when false is passed it should change the
status of the referral code to false.

Root Cause
In updateReferral function in Referral.sol:200 is setting the status of the referral code
always to true irrespective of the passed boolean value.

Internal pre-conditions
None

External pre-conditions
None

Attack Path
1. Handler first set the status of Referral code ALICE to private by calling updateReferr

al(ALICE,true).

2. Now after some time handler needs to set the status of the code from private to
normal for some reason.

3. Now handler calls updateReferral(ALICE,false) but status of the code will not be
set to public because updateReferral is always setting the status of code to true
irrespective of the value passed.

35

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/120
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Referral.sol#L200


Impact
Referral code statuses cannot be set to public from private.

PoC
No response

Mitigation
Instead of setting to true set the provided bool

// @audit-issue setting to true irrespective of bool
function updateReferral(bytes32 _code, bool _isPrivate) external
onlyGovOrHandler {↪→

require(_code != bytes32(0), "Referral: invalid _code");
require(codeOwners[_code] != address(0), "Referral: Code Owner Does Not

Exist");↪→

- isPrivate[_code] = true;
+ isPrivate[_code] = _isPrivate;

emit CodeUpdated(_code, _isPrivate);
}

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Avantis-Labs/avantis-contracts/pull/38

36

https://github.com/Avantis-Labs/avantis-contracts/pull/38


Issue M-11: Stop loss orders cannot be liqui-
dated even if the position is liquidatable
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/133

The protocol has acknowledged this issue.

Found by
jokr, samuraii77

Summary
Due to a check that requires the liquidation price to be greater than the Stop Loss price
(in the case of a buy) in the executeLimitOrder function of the Trading.sol contract, the
operator cannot liquidate an order if the stop loss is higher than the liquidation price,
even when the trade is liquidatable due to sudden price moves or gaps. This check
should only apply to guaranteed Stop Loss (SL) orders. Currently, however, it is also
applied to non-guaranteed orders, making them unliquidatable in these cases.

Root Cause
Incorrect check in Trading.sol:522

require(t.sl==0||(t.buy?liqPrice>t.sl:liqPrice<t.sl),"HAS_SL");

This check should only be done for pairs with guranteed stop loss.

Internal pre-conditions
Gap down or gap up or sudden price move

External pre-conditions
No response

Attack Path
1. Trader open XYZ long at 500.

2. Set his stop loss to 450 and his liquidation price is 400.

3. XYZ is a commodity which got opened at a gap down price the later day at 395.

37

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/133
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Trading.sol#L522


4. The traders position is now liquidatable because current price of XYZ is less than
the liquidation price of 400. But it cannot be liquidated by the operator because of
the above mentioned check and it can only be closed using a stop-loss limit close.

Impact
Positions can’t be liquidated even if they are in the liquidation stage.

PoC
No response

Mitigation
Do that check only for stop loss guaranteed stop loss pairs

38



Issue M-12: No slippage protection in the c
loseTradeMarket() function.
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/141

The protocol has acknowledged this issue.

Found by
Ironsidesec, KupiaSec, eeyore, jokr

Summary
When users call the closeTradeMarket() function, a new Close pending market order is
created. This pending market order can only be finalized by the Operator role. Since this
action may be delayed, users can be negatively impacted by market conditions.

This would be acceptable if the user action was fully within their control, such as when
they control transaction gas usage.

However, as users do not control when this pending action will be completed and are
unable to cancel it, they are exposed to potential fund loss.

Combining this with the fact that the protocol supports a guaranteed stop loss price,
which is not respected in the case of market orders, users may experience greater losses
than expected if the execution is delayed.

Root Cause
No slippage protection in the closeTradeMarket() function flow; the slippageP and wante
dPrice parameters of the PendingMarketOrder struct are set to 0. (here)

Even if set, these parameters are not used within the TradingCallbacks.closeTradeMarke
tCallback() function. (here)

Internal pre-conditions
1. User has an open position in one of the guaranteed stop loss markets.

2. User sets the stop loss at 10% below the position open price.

External pre-conditions
1. There are external negative market conditions, and the user expects these to
worsen over time.

39

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/141
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Trading.sol#L396-L397
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingCallbacks.sol#L171


2. The current loss is only 5% and is still above the guaranteed stop loss.

3. User calls closeTradeMarket(), expecting the trade to close soon.

Attack Path
1. User calls closeTradeMarket() while facing a 5% loss, expecting the trade to close
shortly.

2. The Operator call is delayed, and by the time it is executed, the market has
declined further, resulting in a 12% loss.

3. The guaranteed stop loss at 10% is not respected, causing the user to lose an
additional 2% beyond the expected stop loss.

Impact
• User experiences a loss of funds beyond his control, which cannot be seen as user
mistake.

PoC
Add to MarketTrade.t.sol, and call forgetest-vv--match-testtest_PocMarketCloseNoSli
ppage:

function test_PocMarketCloseNoSlippage() public {
vm.startPrank(traders[0]);
usdc.transfer(traders[2], usdc.balanceOf(traders[0]));
uint amount = 500e6;
usdc.mint(traders[0], amount);
usdc.approve(address(tradingStorage), amount);

uint id = _placeMarketLong(traders[0], amount, btcPairIndex, 50000);
vm.stopPrank();
_executeMarketLong(traders[0], amount, btcPairIndex, 50000, id);

vm.startPrank(traders[1]);
usdc.transfer(traders[2], usdc.balanceOf(traders[1]));
usdc.mint(traders[1], amount);
usdc.approve(address(tradingStorage), amount);

id = _placeMarketLong(traders[1], amount, btcPairIndex, 50000);
vm.stopPrank();
_executeMarketLong(traders[1], amount, btcPairIndex, 50000, id);

vm.roll(3);

vm.startPrank(traders[0]);

40



trading.updateTpAndSl{value:
mockPyth.getUpdateFee(_generateSampleUpdateDataCrypto(1, btcPairIndex, 50000))}(↪→

btcPairIndex,
0,
withPricePrecision(49500),
withPricePrecision(51000),
_generateSampleUpdateDataCrypto(1, btcPairIndex, 50000)
);

vm.startPrank(traders[1]);
trading.updateTpAndSl{value:
mockPyth.getUpdateFee(_generateSampleUpdateDataCrypto(1, btcPairIndex, 50000))}(↪→

btcPairIndex,
0,
withPricePrecision(49500),
withPricePrecision(51000),
_generateSampleUpdateDataCrypto(1, btcPairIndex, 50000)
);

vm.warp(100000);
_setChainlinkBTC(49750); // theoretical -5%

ITradingStorage.Trade memory _trade =
tradingStorage.openTrades(traders[0], btcPairIndex, 0);

vm.startPrank(traders[0]);
console.log("User decides to market close at ~ -5%");
uint closeId = trading.closeTradeMarket(btcPairIndex, 0,
_trade.initialPosToken); // trader 0 decides to market close at -5%↪→

vm.stopPrank();

vm.warp(15);
_setChainlinkBTC(49400); // theoretical ~12%
vm.recordLogs();
console.log("Operator triggers market close at ~ -12%, even though user SL is
at ~ -10%");↪→

_executeMarketClose(btcPairIndex, 0, 0, 49400, closeId);

Vm.Log[] memory entries = vm.getRecordedLogs();
int percentProfit;
(,,,,,percentProfit,,) = abi.decode(entries[17].data, (uint,
ITradingStorage.Trade, bool, uint, uint, int, uint, bool));↪→

console.log("User 1, without slippage protection, experienced a funds loss of
an extra 2% as his stop price was not triggered");↪→

console2.log("User 1 percentProfit:", percentProfit);

vm.startPrank(operator);
vm.recordLogs();
trading.executeLimitOrder{value:
mockPyth.getUpdateFee(_generateSampleUpdateDataCrypto(1, btcPairIndex, 49400))}(↪→

41



ITradingStorage.LimitOrder.SL,
traders[1],
btcPairIndex,
0,
_generateSampleUpdateDataCrypto(1, btcPairIndex, 49400));

entries = vm.getRecordedLogs();
(,,,,,,percentProfit,,) = abi.decode(entries[19].data, (uint, uint,
ITradingStorage.Trade, ITradingStorage.LimitOrder, uint, uint, int, uint,
bool));

↪→

↪→

console.log("User 2 got his SL guaranteed");
console2.log("User 2 percentProfit:", percentProfit);

}

Log output:

Logs:
User decides to market close at ~ -5%
Operator triggers market close at ~ -12%, even though user SL is at ~ -10%
User 1, without slippage protection, experienced a funds loss of an extra 2% as

his stop price was not triggered↪→

User 1 percentProfit: -121582328498
User 2 got his SL guaranteed
User 2 percentProfit: -101585531592

Mitigation
Either respect the guaranteed stop loss in the Closemarket orders or introduce slippage
protection to the closeTradeMarket() function.

42



Issue M-13: User collateral value may be
increased during a Trading.updateMargin(
) call without any USDC transfer in useBac
kupOnly mode.
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/145

Found by
Ironsidesec, TurnipBoy, eeyore, jah, jokr, samuraii77

Summary
If the Governor switches the system to useBackupOnly, a malicious user can exploit this
condition by performing a Trading.updateMargin() DEPOSIT action, effectively increasing
their collateral without transferring the necessary USDC.

This occurs because Trading.updateMargin() is a user-triggered action that calls PriceAg
gregator.fulfill(). In useBackupOnlymode, the price sent to TradingCallbacks.updateM
arginCallback()will always be 0. Although updateMarginCallback() verifies if price!=0, it
does not revert if the price is 0. As a result, the entire if block is skipped, including the
users required USDC transfer.

Furthermore, the system updates the users open trade data with the new DEPOSIT
amount, artificially increasing initialPosToken without any USDC backing.
Consequently, the system data becomes corrupted, making it impossible to exit useBacku
pOnly, liquidate the user position accurately, or distribute fees correctly, leading to
potential protocol losses.

Root Cause
Prematurely updating the user trade (here) and failing to revert when price=0 (here) in us
eBackupOnlymode (here) enables collateral increases without any USDC deposit (here).

Internal pre-conditions
1. The system is set to useBackupOnly state.

External pre-conditions
None.

43

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/145
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Trading.sol#L249
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingCallbacks.sol#L73
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PriceAggregator.sol#L117
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingCallbacks.sol#L76-L77


Attack Path
1. The user calls updateMargin() to deposit collateral.

2. The users trade data is updated based on the deposit amount, with initialPosToke
n and leverage adjusted to reflect the original open interest.

3. In useBackupOnlymode, the UPDATE_MARGIN order type bypasses the if/else block in
fulfill(), setting price=0 for updateMarginCallback().

4. Within updateMarginCallback(), the if block is skipped due to price=0.

5. The transaction completes without transferring USDC from the user to the Vault
Manager.

Impact
• Direct funds loss if useBackupOnly is lifted.

• Data corruption in storage.

• Incorrect fee accounting upon position liquidation.

• Potential protocol loss if the position is force-closed.

PoC
Add the following to IsolatedMargin.t.sol and execute with forgetest-vv--match-testt
est_PocDeposit:

function test_PocDeposit() public {
vm.startPrank(traders[0]);
usdc.transfer(traders[2], usdc.balanceOf(traders[0]));
uint amount = 500e6;
usdc.mint(traders[0], amount);
usdc.approve(address(tradingStorage), amount);

uint id = _placeMarketLong(traders[0], amount, btcPairIndex, 50000);
vm.stopPrank();
_executeMarketLong(traders[0], amount, btcPairIndex, 50000, id);
console2.log("Position opened.");

ITradingStorage.Trade memory _trade =
tradingStorage.openTrades(traders[0], btcPairIndex, 0);

console2.log("User USDC balance:", usdc.balanceOf(traders[0]));
console2.log("User trade initialPosToken balance:", _trade.initialPosToken);

vm.roll(1641070800);
bytes[] memory priceUpdateData = _generateSampleUpdateDataCrypto(1,
btcPairIndex, 50000);↪→

44



vm.startPrank(deployer);
priceAggregator.useBackUpOracleOnly(true);
vm.stopPrank();

vm.startPrank(traders[0]);
trading.updateMargin{value: mockPyth.getUpdateFee(priceUpdateData)}(

btcPairIndex,
0,
ITradingStorage.updateType.DEPOSIT,
amount,
priceUpdateData);

vm.stopPrank();
console2.log("Margin updated.");

ITradingStorage.Trade memory _updatedTrade =
tradingStorage.openTrades(traders[0], btcPairIndex, 0);

console2.log("User USDC balance:", usdc.balanceOf(traders[0]));
console2.log("User trade initialPosToken balance:",
_updatedTrade.initialPosToken);↪→

}

Console log output:

Logs:
Position opened.
User USDC balance: 0
User trade initialPosToken balance: 494000000
Margin updated.
User USDC balance: 0
User trade initialPosToken balance: 993957665

As shown, the user inflated collateral by 500 USDC; initialPosToken increased without a
USDC transfer.

Mitigation
Revert in updateMarginCallback() when price=0.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Avantis-Labs/avantis-contracts/pull/39

45

https://github.com/Avantis-Labs/avantis-contracts/pull/39


Issue M-14: Incorrect calculations in the
Chainlink backup feed price deviation cal-
culation.
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/146

The protocol has acknowledged this issue.

Found by
Ironsidesec, bughuntoor, eeyore, samuraii77

Summary
An incorrect divisor is used in the deviation calculation when the Chainlink backup price
is less than the Pyth price. This can result in unintended reverts even when the price is
within the allowed deviation.

Root Cause
The issue stems from using bkPrice as the divisor in the if(bkPrice<price) case (here),
whereas the correct divisor should be price. This causes the deviation to be calculated
from bkPrice instead of from the intended price.

Internal pre-conditions
1. The pair in addition to Pyth is using a Chainlink backup feed.

2. The backup maxDeviation is set to 2% (or any other valid value).

External pre-conditions
None.

Attack Path
1. A transaction is executed for a pair that is using the Chainlink backup feed.

2. The Chainlink reported price is approximately -2% from the Pyth price.

3. The transaction is incorrectly reverted in a situation where it should be accepted.

46

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/146
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PriceAggregator.sol#L170


Impact
• Reverting time-sensitive function.

• Loss of fees, as the system may subsequently decide to cancelPendingMarketOrder(
). In case it was a market order.

PoC
Consider a simple calculation with a BTC price of 50,000 and a 2% backup deviation.
This deviation allows an acceptable range of 49,000 to 51,000.

Currently, if Pyth reports a price of 50,000 and the Chainlink backup feed is 49,000, this
should be within the acceptable deviation, and the transaction should proceed.
However, due to the incorrect divisor, the transaction is reverted as follows:

(50000 - 49000) * 100 / 49000 > 2%

(50000 * 10**10 - 49000 * 10**10) * 100 * 10**10 / (49000 * 10**10) = 20408163265 >
2%↪→

Using the correct price divisor would yield the intended 2%:

(50000 * 10**10 - 49000 * 10**10) * 100 * 10**10 / (50000 * 10**10) = 20000000000

Mitigation
Use price as the divisor in the if(bkPrice<price) case.

47



Issue M-15: Incorrect depositCap check in T
ranche contract.
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/148

The protocol has acknowledged this issue.

Found by
eeyore, samuraii77

Summary
The depositCap check in the _deposit function of the Tranche contract uses an assets
amount that includes a fee. However, this fee is transferred out of the vault, meaning it
does not contribute to the actual asset amount in the vault and thus should not impact
the depositCap.

Root Cause
In the line require(totalAssets()+assets<depositCap,"DEPOSIT_CAP_BREACHED");, the
function checks assets without accounting for the deduction of getDepositFeesTotal(as
sets). As a result, the depositCap check is inflated by the fee amount, potentially
causing deposits to be rejected incorrectly when the vault is close to the cap. The check
should use assets-fee to accurately reflect the true impact on the vault balance. (here)

Internal pre-conditions
1. The vault is close to reaching its depositCap.

External pre-conditions
None.

Attack Path
1. A user attempts to deposit when the vault is close to its depositCap.

2. Due to the fee being included in the assets amount, the cap check fails, rejecting
the deposit unnecessarily.

48

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/148
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Tranche.sol#L268


Impact
The current implementation may cause users to be incorrectly prevented from
depositing due to an inflated assets value. This issue is more prominent when the vault
balance is near the depositCap, as it could block further deposits prematurely.

Mitigation
Modify the depositCap check to account for the deposit fee by using assets-getDepositF
eesTotal(assets), ensuring only the net deposited amount contributes to the cap
calculation.

49



Issue M-16: Incorrect closing fee calcula-
tion occurs because the AccumulatedMargi
nFee is not deducted from the AdjustedPos
itionSize, resulting in users paying higher
fees.
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/150

The protocol has acknowledged this issue.

Found by
eeyore

Summary
According to the Avantis documentation (doc), the closing fee should be based on the
adjusted position size:

AdjustedPositionSize=TotalPositionSize+AccruedPnL-AccumulatedMarginFee

The documentation provides a clear example:

ifatraderputsup$100ofcollateralata30xleverage,thenthetotalpositionsizew
ouldbe$3,000.Afterdeductingtheopeningfee(andassumingnochangeinthepriceo
ftheunderlyingasset),theleveragedpositionsizewithanaccumulatedmarginfee
onthepositionof$10is$(3000-10)=$2990.Hence,theclosingfeeis2990*0.08%=$2
.392.

However, during closing fee calculation, the AccumulatedMarginFee (rollover fee) is not
deducted as expected.

Root Cause
In the TradingCallbacks contract, where AdjustedPositionSize is calculated during
position closing, the AccumulatedMarginFee is not accounted for and does not reduce the
position size (here and here).

This leads to users paying higher closing fees than they should.

50

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/150
https://docs.avantisfi.com/trading/trading-fees/crypto#closing-fee-0.1-adjusted-position-size
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingCallbacks.sol#L184
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingCallbacks.sol#L376


Internal pre-conditions
None.

External pre-conditions
None.

Attack Path
1. User closes their position.

2. Closing fees are overinflated.

Impact
• Incorrect closing fee calculations result in users losing funds.

• Documentation discrepancy.

Mitigation
Correctly reduce the AdjustedPositionSize by the accumulated rollover fee as described
in the documentation.

51



Issue M-17: Incorrect data is passed to
the TradingStorage.withinExposureLimit
s() function.
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/153

The protocol has acknowledged this issue.

Found by
Afriaudit, eeyore

Summary
When TradingStorage.withinExposureLimits() is called from the TradingCallbacks
contract, the check is performed using an inaccurate OpenInterest value.

The value passed is derived from positionSizeUSDC and leverage, where positionSizeUSD
C has not yet been reduced by the open fee.

If the open fee will be deducted from positionSizeUSDC, the actual OpenInterest used to
update the OI storage values would be lower than the value used in the TradingStorage.
withinExposureLimits() check.

This discrepancy leads to valid trades that would fit within the OI limits being rejected,
resulting in potential loss of funds due to fees paid for operations such as initiating a
market open trade (msg.value) and missing fees for the protocol.

Root Cause
TradingStorage.withinExposureLimits() uses an OpenInterest value that has not been
reduced by the potential open fee, causing the rejection of valid Openmarket or limit
orders that would otherwise fit within OI limits after fee deduction.

The incorrect behavior can be observed here and here.

Internal pre-conditions
1. The OI limits are nearly reached.

External pre-conditions
None.

52

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/153
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingCallbacks.sol#L141
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingCallbacks.sol#L232


Attack Path
1. A user creates a pending Openmarket order (not isPnl), calculating the OI limits to
fit the largest possible OI trade.

2. The open fee is not correctly deducted when TradingStorage.withinExposureLimits
() is used, causing the user pending market order to be rejected.

3. The user collateral is returned, but the fee is retained by the protocol, based on the
assumption that anattemptwasmade.

Impact
• Time-sensitive function is not executed correctly.

• Loss of user funds due to fees.

• Loss of fees for protocol and referrer.

Mitigation
For pending Openmarket or limit orders that are not a new isPnl orders, precalculate the
open position fee and use positionSizeUSDC-fee and leverage to determine the OpenInte
rest passed to TradingStorage.withinExposureLimits().

53



Issue M-18: The closing fee is not factored
into the liquidation price calculation.
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/167

The protocol has acknowledged this issue.

Found by
KupiaSec, bughuntoor, eeyore, jokr

Summary
Based on Avantis documentation (docs) and general logic, the closing fee should be
included in the liquidation price calculation, just as the rollover fee is. The
documentation specifies:

CollateralHealthRatio=(NetCollateral+PnL-accumulatedmarginfee-closingfe
e)/NetCollateral

Omitting the closing fee deduction results in the getTradeLiquidationPrice() function
calculating a liquidation price that is higher than it should be.

Root Cause
The standard closing fee is not deducted in the getTradeLiquidationPricePure()
function (here). This discrepancy with the documentation creates potential for
inaccurate liquidation price ranges.

Internal pre-conditions
None.

External pre-conditions
None.

Attack Path
This is a straightforward calculation error.

54

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/167
https://docs.avantisfi.com/trading/liquidations
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PairInfos.sol#L639-L640


Impact
• Incorrect distribution between PnL and standard fees.

• The tranches reserves and OI will be affected by the trade that should be already
liquidated.

Mitigation
Add the closing fee to the liquidation price calculation.

55



Issue M-19: Wrong skew impact spread will
be returned for a traderwho is opening the
first long position against the already ex-
isting short positions for a particular pair.
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/170

Found by
Varun_05

Summary
Wrong skew impact spread will be returned in case when there is already a short position
and a trader opens a long position i.e the first long position on the same pair.

Root Cause
In the following line https://github.com/sherlock-audit/2024-09-avantis/blob/main/av
antis-contracts/src/PairInfos.sol#L346 The function incorrectly returns 0 when
openInterestUSDCLong is zero for a trading pair.

Internal pre-conditions
Na

External pre-conditions
Initially a short position must be opened on a trading pair and then the first long position
should be opened.

Attack Path
1.Suppose there is initially some short positions opened on a trading pair i.e
openInterestUSDCShort not equal to zero.

2. Now a trader opens a long position on this trading pair which is currently short
skewed. Now as the pair is short skewed currently therefore better price should be
offered to the current trader i.e getSkewImpactSpread function should return

56

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/170
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PairInfos.sol#L346
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PairInfos.sol#L346


negative value as the trader is trying to balance the long/short position ratio but
currently 0 is returned which is incorrect.

3. If this scenario had been reversed i.e there had been initially long position and then
a short position was opened then the getskewImpactSpread function would have
worked completely fine by not returning 0 instead returning a negative value.

Impact
The long trader are not offered better prices for reducing the short skew thus there is no
incentive for the traders to balance the trading pair.

PoC
No response

Mitigation
Modify the getSkewImpactSpread function as follows

function getSkewImpactSpread(uint _pairIndex, bool _isBuy, uint _leveragePosition,
bool isPnl) public view returns(int256 spread){↪→

if(isPnl) return 0; // NO Skew Impact spread for Pnl Based orders

int intPrecision = int(_PRECISION);
int skewParam = pairsStorage.pairSkewImpactMultiplier(_pairIndex);

uint openInterestUSDCLong = storageT.openInterestUSDC(_pairIndex, 0);
uint openInterestUSDCShort = storageT.openInterestUSDC(_pairIndex, 1);

--- if(openInterestUSDCLong == 0) return 0;
+++ if(openInterestUSDCLong + openInterestUSDCShort == 0) return 0;

uint skewPct = _isBuy
? (1e4 * openInterestUSDCLong) / (openInterestUSDCLong +

openInterestUSDCShort)↪→

: (1e4 * openInterestUSDCShort) / (openInterestUSDCLong +
openInterestUSDCShort);↪→

uint skewPctAfter = _isBuy
? (1e4 * (openInterestUSDCLong + _leveragePosition)) /

(openInterestUSDCLong + openInterestUSDCShort + _leveragePosition)↪→

: (1e4 * (openInterestUSDCShort + _leveragePosition)) /
(openInterestUSDCLong + openInterestUSDCShort + _leveragePosition);↪→

int rawSpread = (ABDKMathQuadExt.expInt(skewPctAfter, 1e4, _PRECISION) -
ABDKMathQuadExt.expInt(skewPct,1e4, _PRECISION) + ABDKMathQuadExt.expInt((1e4 -
skewPctAfter), 1e4, _PRECISION) - ABDKMathQuadExt.expInt((1e4 - skewPct), 1e4,
_PRECISION)); spread = (skewParam*rawSpread)/intPrecision;

↪→

↪→

↪→

spread = (skewParam*rawSpread)/intPrecision;

57



}

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Avantis-Labs/avantis-contracts/pull/52

58

https://github.com/Avantis-Labs/avantis-contracts/pull/52


Issue M-20: If a trader of market order or
limit order is blacklisted for USDC token,
reserved USDC tokens cannot be released
forever
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/177

The protocol has acknowledged this issue.

Found by
Ironsidesec, KupiaSec, eeyore, samuraii77

Summary
The protocol uses the collateral token as USDC. If a trader of market order or limit order
is blacklisted for USDC token, closing order is reverted. As a result, the order cannot be
closed and the reserved USDC tokens cannot be released forever.

Root Cause
When the order is closed, the protocol transfers the USDC tokens to trader in the
VaultManager._sendUSDCToTrader.

function _sendUSDCToTrader(address _trader, uint _amount) internal {
[...]
require(storageT.usdc().transfer(_trader, _amount));
[...]

}

If a trader who opens the order is USDC blacklisted, closing order will be reverted.

function _unregisterTrade(
ITradingStorage.Trade memory _trade,
int _percentProfit,
uint _collateral,
uint _feeAmountToken,
uint _lpFeeToken,
bool _isPnl

) private returns (uint usdcSentToTrader) {

59

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/177
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/VaultManager.sol#L623


[...]
storageT.vaultManager().sendUSDCToTrader(address(storageT), feeAfterRebate -
referrerRebate - vaultAllocation);↪→

Internal pre-conditions
None

External pre-conditions
1. None

Attack Path
None

Impact
If a trader of market order or limit order is blacklisted for USDC token, his order cannot
be closed and the reserved USDC tokens cannot be released forever.

PoC
None

Mitigation
In the _sendUSDCToTrader function, track the amount of tokens to transfer to trader
instead of direct transferring to trader. And, add the claim function that the traders
claim tracked amount of USDC tokens.

60



Issue M-21: The slippage percent is not up-
dated during updating an open limit order
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/190

Found by
Ironsidesec, KupiaSec, bughuntoor, pseudoArtist, samuraii77

Summary
When updating open limit orders, Trading.updateOpenLimitOrder() accepts _slippageP
parameter to update the slippage percent. But in the inner implementation TradingStor
age.updateOpenLimitOrder() doesn't update the slippage percent.

Root Cause
The slippage percent is given to the [Trading.updateOpenLimitOrder()], but it is not
updated in the inner implementation.

The supports updating the slippage percent. It accepts _slippageP as a function
parameter and sends the parameter to TradingStorage.updateOpenLimitOrder().

427: function updateOpenLimitOrder(
428: uint _pairIndex,
429: uint _index,
430: uint _price,
431: @> uint _slippageP,
432: uint _tp,
433: uint _sl
434: ) external whenNotPaused {
442: o.slippageP = _slippageP;
446: storageT.updateOpenLimitOrder(o);

449: }

But in the implementation of , there is no code to set the slippage percent.

function updateOpenLimitOrder(OpenLimitOrder calldata _o) external override
onlyTrading {↪→

if (!hasOpenLimitOrder(_o.trader, _o.pairIndex, _o.index)) {
return;

}
OpenLimitOrder storage o =
openLimitOrders[openLimitOrderIds[_o.trader][_o.pairIndex][_o.index]];↪→

61

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/190


o.positionSize = _o.positionSize;
o.buy = _o.buy;
o.leverage = _o.leverage;
o.tp = _o.tp;
o.sl = _o.sl;
o.price = _o.price;
o.block = block.number;

}

Internal pre-conditions
None

External pre-conditions
None

Attack Path
None

Impact
The slippage percent is not updated even though traders try to update the slippage.

PoC
None

Mitigation
It is recommended to change the code as following:

function updateOpenLimitOrder(OpenLimitOrder calldata _o) external override
onlyTrading {↪→

if (!hasOpenLimitOrder(_o.trader, _o.pairIndex, _o.index)) {
return;

}
OpenLimitOrder storage o =

openLimitOrders[openLimitOrderIds[_o.trader][_o.pairIndex][_o.index]];↪→

o.positionSize = _o.positionSize;
o.buy = _o.buy;
o.leverage = _o.leverage;
o.tp = _o.tp;

62



o.sl = _o.sl;
o.price = _o.price;

+ o.slippageP = _o.slippageP;
o.block = block.number;

}

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Avantis-Labs/avantis-contracts/pull/40

63

https://github.com/Avantis-Labs/avantis-contracts/pull/40


Issue M-22: In the Tranche.sol, there is no
slippage check to deposit and withdraw
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/193

The protocol has acknowledged this issue.

Found by
KupiaSec, pseudoArtist, samuraii77, thekmj

Summary
In the Tranche.sol, there is no slippage check to deposit, withdraw, mint and redeem.
Users should pay balancing fee and balancing fee is calculated using balance of junior
and senior tranches. As a result, when users deposit or withdraw, actual paid balancing
fee can be different from expected.

Root Cause
The function returns balancingFee or 0 according to the getDynamicReserveRatio

function getBalancingFee(address tranche, bool isDeposit, uint256 assets) external
view override returns (uint256) {↪→

if ((getDynamicReserveRatio(tranche, isDeposit, assets) * 100) >
balancingDeltaThreshold) {↪→

if ((tranche == address(junior) && isDeposit) || (tranche ==
address(senior) && !isDeposit)) {↪→

return balancingFee;
}

}
if ((getDynamicReserveRatio(tranche, isDeposit, assets) * 100) < 1e4 -
balancingDeltaThreshold) {↪→

if ((tranche == address(senior) && isDeposit) || (tranche ==
address(junior) && !isDeposit)) {↪→

return balancingFee;
}

}
return 0;

}

The calculates the reserve ratio using current balances of tranches.

function getDynamicReserveRatio(address tranche, bool isDeposit, uint256 assets)
public view returns(uint256){↪→

64

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/193


IERC20 asset = IERC20(junior.asset());
if (asset.balanceOf(address(senior)) == 0 && asset.balanceOf(address(junior))
== 0) {↪→

return targetReserveRatio;
}
if(tranche == address(junior)){

return isDeposit
? (100 * (asset.balanceOf(address(junior)) + assets)) /

(asset.balanceOf(address(junior)) +
asset.balanceOf(address(senior)) + assets)↪→

: (100 * (asset.balanceOf(address(junior)) - assets)) /
(asset.balanceOf(address(junior)) +

asset.balanceOf(address(senior)) - assets);↪→

}
else{

return isDeposit
? (100 * asset.balanceOf(address(junior))) /

(asset.balanceOf(address(junior)) +
asset.balanceOf(address(senior)) + assets)↪→

: (100 * asset.balanceOf(address(junior))) /
(asset.balanceOf(address(junior)) +

asset.balanceOf(address(senior)) - assets);↪→

}

}

Internal pre-conditions
None

External pre-conditions
1. None

Attack Path
Let's consider the following scenario:

• Alice tries to deposit and expected balancing fee is 0.

• Another users change the balance of junior and senior tranches before Alice's
transaction is executed.

• Current balancing fee is changed to balancingFee and her transaction is executed.
Alice should pay unexpected balancing fee and receive less shares than expected
amount.

65



Impact
Liquidity providers may receive fewer assets or shares than expected from the tranche
when depositing or withdrawing.

PoC
None

Mitigation
Add the slippage check to the deposit, withdraw, mint and redeem function in the
tranche contract.

66



Issue M-23: Inconsistency referrerRebate
fee allocation between opening and clos-
ing order
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/203

Found by
Afriaudit, KupiaSec, Varun_05, eeyore, samuraii77

Summary
When opening the order, feeAfterRebate is calculated not to contain referrerRebate and
vaultAllocation is calculated using feeAfterRebate. However, when closing the order, fe
eAfterRebate is calculated to contain referrerRebate. This is inconsistent fee allocation.

Root Cause
In the , feeAfterRebate does not contain referrerRebate and vaultAllocation is
calculated using feeAfterRebate. And this is paid to vault for opening fee.

File: avantis-contracts\src\TradingStorage.sol
L622: uint vaultAllocation = (feeAfterRebate * (100 - _callbacks.vaultFeeP())) /

100;↪→

uint govFees = (feeAfterRebate * _callbacks.vaultFeeP()) / 100 >> 1;
if (_usdc) IERC20(usdc).safeTransfer(address(vaultManager), vaultAllocation

- referrerRebate);↪→

vaultManager.allocateRewards(vaultAllocation - referrerRebate, false);
govFeesUSDC += govFees;
devFeesUSDC += feeAfterRebate - vaultAllocation - govFees;

When closing trade market, feeAfterRebate contains referrerRebate. However, when
closing trade market, feeAfterRebate does not contain referrerRebate.

In the , feeAfterRebate contains referrerRebate and vaultAllocation is calculated using
feeAfterRebate. And this is paid to vault for closing fee.

File: avantis-contracts\src\TradingCallbacks.sol
L533: uint vaultAllocation = ((feeAfterRebate - referrerRebate) * (100 -

vaultFeeP)) / 100;↪→

uint govFees = (feeAfterRebate - referrerRebate - vaultAllocation) / 2;
storageT.incrementClosingFees(

feeAfterRebate - referrerRebate - vaultAllocation - govFees,

67

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/203


govFees
);

Internal pre-conditions
None

External pre-conditions
1. None

Attack Path
None

Impact
Fee allocation between opening and closing order is inconsistent

PoC
None

Mitigation
Make referrerRebate fee allocation between opening and closing order consistent.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Avantis-Labs/avantis-contracts/pull/46

68

https://github.com/Avantis-Labs/avantis-contracts/pull/46


Issue M-24: The VeTranche.getTotalLockP
oints() function results in a loss of preci-
sion
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/218

The protocol has acknowledged this issue.

Found by
KupiaSec, eeyore

Summary
The getTotalLockPoints() function does not return totalLockPoints; instead, it returns t
otalLockPoints/_PRECISION. This leads to a loss of precision when calculating rewards.

Root Cause
As noted at line 115, the getTotalLockPoints() function returns totalLockPoints/_PRECISI
ON, not totalLockPoints. This is a source of precision loss.

function getTotalLockPoints() public view override returns (uint256) {
115 return totalLockPoints/_PRECISION;

}

Let's consider the following scenario:

1. Lock points:

• Alice: 10e12

• Bob: 8e12+9e5

• totalLockPoints: 18e12+9e5

• getTotalLockPoints() returns: (18e12+9e5)/1e6=18e6

2. 180e6 rewards are distributed.

• rewardsDistributedPerSharePerLockPoint=(180e6*1e18)/18e6=10e18

function _distributeRewards(uint256 rewards) internal returns (uint256) {

69

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/218
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/VeTranche.sol#L115


272 rewardsDistributedPerSharePerLockPoint += (rewards * (_PRECISION **3))
/ getTotalLockPoints();↪→

...

3. Individual rewards:

• Alice: 10e18*10e12/1e24=100e6

• Bob: 10e18*(8e12+9e5)/1e24=80e6+9

• Needed rewards: 100e6+80e6+9=180e6+9

function _updateReward(uint256 _id) internal {
if(lastSharePoint[_id] == rewardsDistributedPerSharePerLockPoint )

return;↪→

298 uint256 pendingReward = ((rewardsDistributedPerSharePerLockPoint -
lastSharePoint[_id]) *↪→

tokensByTokenId[_id] *
lockMultiplierByTokenId[_id]) /
(_PRECISION **4);

rewardsByTokenId[_id] += pendingReward;
lastSharePoint[_id] = rewardsDistributedPerSharePerLockPoint;

}

As a result, the needed rewards exceed the actual total rewards.

Internal pre-conditions

External pre-conditions

Attack Path

Impact
The needed rewards may exceed the actual total rewards.

PoC

Mitigation
Use totalLockPoints instead of totalLockPoints/_PRECISION.

70



IssueM-25: Fees is not sent to the operator
in case of opening a limit order using the
openTrade function
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/219

Found by
KupiaSec, Varun_05, samuraii77

Summary
Fees is incorrectly not sent to the operator in case of opening a limit order using the
openTrade function.

Root Cause
Currently sending the operator fees is used only when opening a market order or a
market pnl order . Fees is send to the operator because it used to update the feed in the
pyth contracts. In case of limit orders no fees is send to the operator even though the
trader sends the fees with the function call. https://github.com/sherlock-audit/2024-09
-avantis/blob/main/avantis-contracts/src/Trading.sol#L318

Internal pre-conditions
Na

External pre-conditions
Na

Attack Path
Following is openTrade function

function openTrade(
ITradingStorage.Trade calldata t,
IExecute.OpenLimitOrderType _type,
uint _slippageP

) external payable whenNotPaused returns(uint orderId) {

71

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/219
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Trading.sol#L318
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/Trading.sol#L318


IPriceAggregator aggregator = storageT.priceAggregator();
IPairStorage pairsStored = aggregator.pairsStorage();

require(storageT.pendingOrderIdsCount(__msgSender()) <
storageT.maxPendingMarketOrders(), "MAX_PENDING_ORDERS");↪→

require(
storageT.openTradesCount(__msgSender(), t.pairIndex) +

storageT.pendingMarketOpenCount(__msgSender(), t.pairIndex) +
storageT.openLimitOrdersCount(__msgSender(), t.pairIndex) <
storageT.maxTradesPerPair(),

"MAX_TRADES_PER_PAIR"
);

require(t.positionSizeUSDC.mul(t.leverage) >=
pairsStored.pairMinLevPosUSDC(t.pairIndex), "BELOW_MIN_POS");↪→

require(t.tp == 0 || (t.buy ? t.tp > t.openPrice : t.tp < t.openPrice),
"WRONG_TP");↪→

require(t.sl == 0 || (t.buy ? t.sl < t.openPrice : t.sl > t.openPrice),
"WRONG_SL");↪→

if (_type != IExecute.OpenLimitOrderType.MARKET && _type !=
IExecute.OpenLimitOrderType.MARKET_PNL ) {↪→

require(
t.leverage > 0 &&

t.leverage >= pairsStored.pairMinLeverage(t.pairIndex, false) &&
t.leverage <= pairsStored.pairMaxLeverage(t.pairIndex, false),

"LEVERAGE_INCORRECT"
);

storageT.transferUSDC(__msgSender(), address(storageT),
t.positionSizeUSDC);↪→

uint index = storageT.firstEmptyOpenLimitIndex(__msgSender(),
t.pairIndex);↪→

storageT.storeOpenLimitOrder(
ITradingStorage.OpenLimitOrder(

__msgSender(),
t.pairIndex,
index,
t.positionSizeUSDC,
t.buy,
t.leverage,
t.tp,
t.sl,
t.openPrice,
_slippageP,

72



block.number,
0

)
);

aggregator.executions().setOpenLimitOrderType(__msgSender(),
t.pairIndex, index, _type);↪→

emit OpenLimitPlaced(__msgSender(), t.pairIndex, index, t.buy,
t.openPrice, 0, _type, _slippageP, t.positionSizeUSDC);↪→

} else {

(bool sent, ) = payable(operator).call{value: msg.value}("");
require(sent, "EXECUTION_FEE_NOT_SENT");
require(

t.leverage > 0 &&
t.leverage >= pairsStored.pairMinLeverage(t.pairIndex, _type ==

IExecute.OpenLimitOrderType.MARKET_PNL) &&↪→

t.leverage <= pairsStored.pairMaxLeverage(t.pairIndex, _type ==
IExecute.OpenLimitOrderType.MARKET_PNL),↪→

"LEVERAGE_INCORRECT"
);

storageT.transferUSDC(__msgSender(), address(storageT),
t.positionSizeUSDC);↪→

orderId = _type == IExecute.OpenLimitOrderType.MARKET ?
aggregator.getPrice(t.pairIndex,

IPriceAggregator.OrderType.MARKET_OPEN) :↪→

aggregator.getPrice(t.pairIndex,
IPriceAggregator.OrderType.MARKET_OPEN_PNL);↪→

storageT.storePendingMarketOrder(
ITradingStorage.PendingMarketOrder(

ITradingStorage.Trade(
__msgSender(),
t.pairIndex,
0,
0,
t.positionSizeUSDC,
0,
t.buy,
t.leverage,
t.tp,
t.sl,
0

),
0,
t.openPrice,

73



_slippageP
),
orderId,
true

);

emit MarketOrderInitiated(__msgSender(), t.pairIndex, true, orderId,
block.timestamp);↪→

}
}

As can be seen form above when order type is reversal or momentum then no fees is sent
to the operator and a new limit order is opened. Now lets see that when execute limit
order function is called what happens. Following is execute limit order function

function executeLimitOrder(
ITradingStorage.LimitOrder _orderType,
address _trader,
uint _pairIndex,
uint _index,
bytes[] calldata priceUpdateData

) external payable whenNotPaused onlyOperator {

IPairStorage pairsStored =
IPriceAggregator(storageT.priceAggregator()).pairsStorage();↪→

if (_orderType == ITradingStorage.LimitOrder.OPEN) {

require(storageT.hasOpenLimitOrder(_trader, _pairIndex, _index),
"NO_LIMIT");↪→

} else {
ITradingStorage.Trade memory t = storageT.openTrades(_trader,

_pairIndex, _index);↪→

require(t.leverage > 0, "NO_TRADE");
require(_orderType != ITradingStorage.LimitOrder.SL || t.sl > 0,

"NO_SL");↪→

if (_orderType == ITradingStorage.LimitOrder.LIQ) {
uint liqPrice = pairInfos.getTradeLiquidationPrice(

t.trader,
t.pairIndex,
t.index,
t.openPrice,
t.buy,
t.initialPosToken,
t.leverage

);

74



require(t.sl == 0 || (t.buy ? liqPrice > t.sl : liqPrice < t.sl),
"HAS_SL");↪→

}else{
require(block.timestamp - t.timestamp >=

pairsStored.openCloseThreshold(t.pairIndex, t.initialPosToken.mul(t.leverage)),
"EARLY_CLOSE");

↪→

↪→

}
}

IPriceAggregator aggregator = storageT.priceAggregator();
IExecute executor = aggregator.executions();

IExecute.TriggeredLimitId memory triggeredLimitId =
IExecute.TriggeredLimitId(↪→

_trader,
_pairIndex,
_index,
_orderType

);

bool isPnl = storageT.priceAggregator().pairsStorage().getPosType(_trader,
_pairIndex, _index);↪→

uint orderId = aggregator.getPrice(
_pairIndex,
_orderType == ITradingStorage.LimitOrder.OPEN

? IPriceAggregator.OrderType.LIMIT_OPEN
: isPnl

? IPriceAggregator.OrderType.LIMIT_CLOSE_PNL
: IPriceAggregator.OrderType.LIMIT_CLOSE

);

storageT.storePendingLimitOrder(
ITradingStorage.PendingLimitOrder(_trader, _pairIndex, _index,

_orderType),↪→

orderId
);

executor.storeFirstToTrigger(triggeredLimitId, __msgSender());
emit LimitOrderInitiated(_trader, _pairIndex, orderId, block.timestamp);

aggregator.fulfill{value: msg.value}(orderId, priceUpdateData);
}

As can be seen from above that the operator needs to send some eth along this function
call in order to call fulfill function on aggregator as it updates the pyth price feed
therefore while opening limit orders fees should be sent to the operator in case of
reversal and momentum orders too.

75



Impact
Operator is not paid fees in case of opening limit orders of type reversal or momentum.

PoC
No response

Mitigation
Modify the opentrade function as follows

function openTrade(
ITradingStorage.Trade calldata t,
IExecute.OpenLimitOrderType _type,
uint _slippageP

) external payable whenNotPaused returns(uint orderId) {

IPriceAggregator aggregator = storageT.priceAggregator();
IPairStorage pairsStored = aggregator.pairsStorage();

require(storageT.pendingOrderIdsCount(__msgSender()) <
storageT.maxPendingMarketOrders(), "MAX_PENDING_ORDERS");↪→

require(
storageT.openTradesCount(__msgSender(), t.pairIndex) +

storageT.pendingMarketOpenCount(__msgSender(), t.pairIndex) +
storageT.openLimitOrdersCount(__msgSender(), t.pairIndex) <
storageT.maxTradesPerPair(),

"MAX_TRADES_PER_PAIR"
);

require(t.positionSizeUSDC.mul(t.leverage) >=
pairsStored.pairMinLevPosUSDC(t.pairIndex), "BELOW_MIN_POS");↪→

require(t.tp == 0 || (t.buy ? t.tp > t.openPrice : t.tp < t.openPrice),
"WRONG_TP");↪→

require(t.sl == 0 || (t.buy ? t.sl < t.openPrice : t.sl > t.openPrice),
"WRONG_SL");↪→

++++ (bool sent, ) = payable(operator).call{value: msg.value}("");
++++ require(sent, "EXECUTION_FEE_NOT_SENT");

if (_type != IExecute.OpenLimitOrderType.MARKET && _type !=
IExecute.OpenLimitOrderType.MARKET_PNL ) {↪→

require(
t.leverage > 0 &&

76



t.leverage >= pairsStored.pairMinLeverage(t.pairIndex, false) &&
t.leverage <= pairsStored.pairMaxLeverage(t.pairIndex, false),

"LEVERAGE_INCORRECT"
);

storageT.transferUSDC(__msgSender(), address(storageT),
t.positionSizeUSDC);↪→

uint index = storageT.firstEmptyOpenLimitIndex(__msgSender(),
t.pairIndex);↪→

storageT.storeOpenLimitOrder(
ITradingStorage.OpenLimitOrder(

__msgSender(),
t.pairIndex,
index,
t.positionSizeUSDC,
t.buy,
t.leverage,
t.tp,
t.sl,
t.openPrice,
_slippageP,
block.number,
0

)
);

aggregator.executions().setOpenLimitOrderType(__msgSender(),
t.pairIndex, index, _type);↪→

emit OpenLimitPlaced(__msgSender(), t.pairIndex, index, t.buy,
t.openPrice, 0, _type, _slippageP, t.positionSizeUSDC);↪→

} else {

------- (bool sent, ) = payable(operator).call{value: msg.value}("");
------ require(sent, "EXECUTION_FEE_NOT_SENT");

require(
t.leverage > 0 &&

t.leverage >= pairsStored.pairMinLeverage(t.pairIndex, _type
== IExecute.OpenLimitOrderType.MARKET_PNL) &&↪→

t.leverage <= pairsStored.pairMaxLeverage(t.pairIndex, _type
== IExecute.OpenLimitOrderType.MARKET_PNL),↪→

"LEVERAGE_INCORRECT"
);

storageT.transferUSDC(__msgSender(), address(storageT),
t.positionSizeUSDC);↪→

orderId = _type == IExecute.OpenLimitOrderType.MARKET ?

77



aggregator.getPrice(t.pairIndex,
IPriceAggregator.OrderType.MARKET_OPEN) :↪→

aggregator.getPrice(t.pairIndex,
IPriceAggregator.OrderType.MARKET_OPEN_PNL);↪→

storageT.storePendingMarketOrder(
ITradingStorage.PendingMarketOrder(

ITradingStorage.Trade(
__msgSender(),
t.pairIndex,
0,
0,
t.positionSizeUSDC,
0,
t.buy,
t.leverage,
t.tp,
t.sl,
0

),
0,
t.openPrice,
_slippageP

),
orderId,
true

);

emit MarketOrderInitiated(__msgSender(), t.pairIndex, true, orderId,
block.timestamp);↪→

}
}

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Avantis-Labs/avantis-contracts/pull/41

78

https://github.com/Avantis-Labs/avantis-contracts/pull/41


Issue M-26: User fund loss and incorrect
fee calculation during partial trade mar-
ket close in an edge case scenario.
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/226

Found by
eeyore, jokr, qpzm

Summary
The Trading.closeTradeMarket() function allows for partial position closing. However,
when partial closing occurs, an issue within the TradingCallbacks._unregisterTrade()
function leads to user fund losses and incorrect fee calculations.

When the condition if(_trade.initialPosToken==_collateral||(_collateral+totalFees
>=_trade.initialPosToken)) evaluates to true solely due to the second part (_collatera
l+totalFees>=_trade.initialPosToken), the position is closed as if the entire remaining
collateral was requested for withdrawal (_collateral=_trade.initialPosToken;).

This condition causes direct user fund losses, as the total fees were already deducted
from the users collateral during pairInfos.getTradeValue() calculations and reflected in
the withdrawal amount usdcSentToTrader. When the condition (_collateral+totalFees>
=_trade.initialPosToken) is met, the user is penalized again with his remaining
collateral.

In addition to this double penalization, the funds are locked in the Vault Manager, and
final fee calculations are made based on an incorrect value. The _collateral should
reflect the remaining _trade.initialPosToken when calculating fees for closing the
position.

Root Cause
The broken condition in if(_trade.initialPosToken==_collateral||(_collateral+totalF
ees>=_trade.initialPosToken)) causes direct user fund losses and incorrect fee
accounting when (_collateral+totalFees>=_trade.initialPosToken) is met. (here)

Internal pre-conditions
None.

79

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/226
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/TradingCallbacks.sol#L556


External pre-conditions
None.

Attack Path
1. A user performs a partial close on an OpenTrade.

2. The if/else block in the (_collateral+totalFees>=_trade.initialPosToken) check
matches, with _collateral less than _trade.initialPosToken.

3. User is penalized.

4. The _collateral used in fee calculations in pairInfos.getTradeValue() was
incorrect.

Impact
• Direct user fund losses.

• Fees calculated based on an incorrect _collateral value are undercalculated.

PoC
Add the following to MarketTrade.t.sol and call forgetest-vv--match-testtest_PocPart
ialClose:

function test_PocPartialClose() public {
vm.startPrank(traders[0]);
usdc.transfer(traders[2], usdc.balanceOf(traders[0]));
uint amount = 10000e6;
usdc.mint(traders[0], amount);
usdc.approve(address(tradingStorage), amount);

uint id1 = _placeMarketLong(traders[0], amount / 2, btcPairIndex, 50000);
uint id2 = _placeMarketLong(traders[0], amount / 2, btcPairIndex, 50000);
vm.stopPrank();
_executeMarketLong(traders[0], amount / 2, btcPairIndex, 50000, id1);
_executeMarketLong(traders[0], amount / 2, btcPairIndex, 50000, id2);
vm.startPrank(traders[0]);

uint pnlRewardsBefore = vaultManager.pnlRewards();
uint totalRewardsBefore = vaultManager.totalRewards();

vm.warp(100000);

ITradingStorage.Trade memory _trade =
tradingStorage.openTrades(traders[0], btcPairIndex, 0);

80



_setChainlinkBTC(50000);
uint closed1 = _placeMarketClose(btcPairIndex, _trade.initialPosToken, 0,
50000);↪→

uint closed2 = _placeMarketClose(btcPairIndex, 4900000000, 1, 50000);
vm.stopPrank();
_executeMarketClose(btcPairIndex, _trade.initialPosToken, 0, 50000, closed1);
uint pnlRewardsAfter1 = vaultManager.pnlRewards() - pnlRewardsBefore;
uint totalRewardsAfter1 = vaultManager.totalRewards() - totalRewardsBefore;
uint userBalanceAfter1 = usdc.balanceOf(traders[0]);

_executeMarketClose(btcPairIndex, _trade.initialPosToken, 0, 50000, closed2);
uint pnlRewardsAfter2 = vaultManager.pnlRewards() - pnlRewardsBefore;
uint totalRewardsAfter2 = vaultManager.totalRewards() - totalRewardsBefore;
uint userBalanceAfter2 = usdc.balanceOf(traders[0]);

assert(tradingStorage.openTrades(traders[0], btcPairIndex, 0).leverage == 0);
assert(tradingStorage.openTrades(traders[0], btcPairIndex, 1).leverage == 0);

console2.log("User loss:", userBalanceAfter1 - (userBalanceAfter2 -
userBalanceAfter1));↪→

console2.log("Pnl reward loss:", pnlRewardsAfter1 - (pnlRewardsAfter2 -
pnlRewardsAfter1));↪→

console2.log("Reward loss:", totalRewardsAfter1 - (totalRewardsAfter2 -
totalRewardsAfter1));↪→

}

Console output:

Logs:
User loss: 39313147
Pnl reward loss: 287140
Reward loss: 319770

The log shows a direct loss of approximately $40 for the user when closing the position
partially, compared to closing it fully, highlighting the edge case error.

Mitigation
Remove (_collateral+totalFees>=_trade.initialPosToken) from the if() condition, as
totalFees were already correctly deducted from the user’s collateral.

- if (_trade.initialPosToken == _collateral || (_collateral + totalFees >=
_trade.initialPosToken)){↪→

+ if (_trade.initialPosToken == _collateral) {
storageT.unregisterTrade(_trade.trader, _trade.pairIndex, _trade.index);
pairInfos.resetTradeInitialAccess(_trade.trader, _trade.pairIndex,

_trade.index);↪→

_collateral = _trade.initialPosToken;

81



}
else {

storageT.registerPartialTrade(_trade.trader, _trade.pairIndex,
_trade.index, _collateral);↪→

}

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Avantis-Labs/avantis-contracts/pull/42

82

https://github.com/Avantis-Labs/avantis-contracts/pull/42


Issue M-27: Incorrect Spread Percentage
Used for PnL-Based Orders in fulfill Func-
tion of PriceAggregator Contract
Source: https://github.com/sherlock-audit/2024-09-avantis-judging/issues/230

Found by
Afriaudit, Ironsidesec, KupiaSec, TurnipBoy, Varun_05, jokr, qpzm

Summary
In the fulfill function of the PriceAggregator contract, the spread percentage (spreadP)
for orders of type MARKET_OPEN_PNL is incorrectly derived. Instead of fetching the
spread for PnL-based orders, the function defaults to using the spread percentage for
regular orders.

Root Cause
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/
PriceAggregator.sol#L185

The issue lies in the fulfill function where spreadP is set using pairsStorage.pairSpreadP(
r.pairIndex,false), regardless of the OrderType. When OrderType.MARKET_OPEN_PNL
is used, the PnL-based spread should instead be retrieved with
pairsStorage.pairSpreadP(r.pairIndex, true).

if (answers.length > 0) {
ICallbacks.AggregatorAnswer memory a = ICallbacks.AggregatorAnswer(

orderId,
_median(answers),
pairsStorage.pairSpreadP(r.pairIndex, false) // Issue: Not distinguishing

between PnL-based orders↪→

);

Internal pre-conditions
No response

83

https://github.com/sherlock-audit/2024-09-avantis-judging/issues/230
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PriceAggregator.sol#L185
https://github.com/sherlock-audit/2024-09-avantis/blob/main/avantis-contracts/src/PriceAggregator.sol#L185


External pre-conditions
No response

Attack Path
No response

Impact
improper spread percentage usage for pnl Order type

PoC
No response

Mitigation
Update the fulfill function to check the OrderType before determining the spread
percentage

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Avantis-Labs/avantis-contracts/pull/43

84

https://github.com/Avantis-Labs/avantis-contracts/pull/43


Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

85


